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Summary

Task Objectives and Technical Problem:

I. To make high quality array measurements of high-frequency (2-50 Hz) seismic waves generated by
natural and artificial sources in ghgh-Q regions.

2. To measure fundamental properties of the seismic wave field, including the polarization and spatial
coherence.

3. Toinfer the scattering and attenuative properties of the earth's crust from measurements of the wave
tield.

General Methodology:

Several well-calibrated differential arrays were installed in quiet, hard rock sites in NE United States,
including the Adirondack mountains and Hudson Valley. The instrumentation included twenty EDA
Associate seismic recorders, which are 12 bit gain ranged 3 channel recorders with a sampling rate of up to
200 Hz. Each recorder was connected to a three-component Mark Products L22D geophone, which has a
velocity response that is tlat between 2 and 50 Hz. We calibrated each of the geophones with a mass-drop
test. Timing was accomplished by synchronizing the internal clocks of the recorders to GOES satellite
time. The instruments were configured into linear arrays, with a inter-element spacing of between 6 and
200 meters. Four linear arrays were run during this project: ECO1 (a six ¢element array in Newcomb, NY
with 15 meter spacing), ECO2 (a six element array in Newcomb, NY with 100 meter spacing), DBM (an
eight element array at Dunn Bar Mt., New York with a 6-200 meter spacing) and HUDRISE (a 20 element
array near New Paltz, NY, with T km spacing). Operation times varied trom a few days to six months.
These arrays recorded a variety of signals, including small regional earthquakes in New England and
Canada, quarry biasts, and shots of the NYNEX and HUDRISE experiment.

The data collected by these arrays were analyzed on a Sun 3/260 computer workstation, and measurements
of frequency-dependent polarization and frequency-dependent spatial coherence were made using standard
algorithms.

Technical Results and Important Findings and Conclusions:

[. The spatial coherence of \he wavetield in these hard-rock sites was determined to be very small, only
one sixth to one-halt of a wavelength. Very strong scattering occuring near the arrays, even though they
were chosen to be in a site that was superficially fairly ‘homogencous'. The coherence decreases
smoothly with inter-receiver offset, indicuting that we are measuring a robust property of the wavefield,
and not simply an instrument coupling problem or outcrop-scale eftect. Coherence depends most strongly
upon the product of inter-receiver oftset and frequency, and is not & measurable function of wave type
(that is, P or §) or source-receiver range.  This result may imply that the scuattering is a self-similar
Process.

2. The polarization of the onset of the P wave iy generally linear, with a direction consistent with the
source-receiver geometry over a wide frequency band (at least 3 to 30 Hz). The Polarization of the P wave
coda 1y generally chaotic, with significant tangential motion and a direction that varies strongly with
frequency.

Significant Hardware Developments:

We are in the process of building a semi-portable broad-band array, based on Guralp CMG-4 geophones
(with aresponse from 0.02 w 50 Hz), to compliment our high frequency array.




Special Comments and Implications for Further Reseuarch:

1. The wavetield (including coda) is coherent over distances farge enough that array techniques can be
sucd o mprove the signal/inoise ratio of measurements.

20 Our modeling of the very smatl coherence lengths (generally less than on hall of a wavelength),
indicate that very strong scattering is oceuring in the upper kilometer of crust. We can not make direct
medasurements of processes occurring below that depth, since they are muasked by the near-surface
scattering. Nevertheless, the fuct that the seismograms contain distinet P and S waves indicates that the
scattering cannot be so strong that wave tield becomes diffusive. We theretore teel that the scattering must
be less deep in the eadarth, with the newr-surface scattering possibly representing i heterogeneous weathered
zone ut the top of the crust. This conclusion needs to be checked by measurements made in boreholes up
o 1-2 kilometers deep.

30 Muasy measurements of shear wave splitiing have been interpreted as being due to anisotropy.
Tapicadiv, the first arriving shear energy s tound to be lincarly polurized (with a direction that is
sidependent 0 source Tocation). “This shear wave s mterpreted as the fast anisotropic shear wave. The
nie v hen the polarizaiion becomes non-linear is taken 1o be the urrival ol the slow shear wave, with the
nme ditierence being proportional o the amount of anisotropy.  Our results suggest that onset of non-
lnear poiarization nuiy in niany cases be due to scattering, not to the arrival of a slow shear wave. In these
Ciases. al best a minimum estimate of the amount of anisotropy can be measured. The presence of
seaitering shoald be tested Tor by examining the polarization of the P wave. It ithas significant tangential
modion, and a polarizaton that shifts rapidly from linear to non-linear, then a similar behavior of the shear
wave should be aseribed to scattering, not anisotropy.

Bibliography:
Nenke, W, AL Lerner-Lam, und B. Dubendorff, Polarization and Coherence of 5-30 Hz Seismic

Wavetields ata Hard Rock Site and their Relevance to Velocity Heterogeneities in the Crust, submitted to
Buil. Seism, Soc, Ama, 1989,
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Abstract. Except for its very onset, the P wave of earthquakes and chemical explosions
observed at two narrow-aperture arrays on hard rock sites in the Adirondack Mountains
have a nearly random polarization. The amount of energy on the vertical, radial and
transverse components is about equal over the frequency range 5-30 Iz, for the entire
seismogram. The spatial coherence of the seismograms is approximately exp(—cfAx),
where ¢ is in the range 0.4 t0 0.7 km~tHz"!, f is frequency and Ax is the distance between
array elements. Vertical, radial, and transverse components were quite coherent over the
aperture of the array, indicating that the transverse motion of the compressional wave is a
property of relatively large (106 m3) volumes of rock, and not just an anomaly caused by a
malfunctioning instrument, poor instrument-rock coupling, or outcrop-scale effects.The
spatial coherence is approximatcly independent of component, epicentral azimuth and
range, and whether P or S wave coda is being considered, at least for propagation distances
between 5 and 170 km. These results imply a strongly and three-dimensionally
heterogeneous crust, with near-receiver scattering in the uppermost crust controlling the
coherence properties of the waves.




Introduction

Seismograms of local and regional events are very complicated at frequencies
greater than a few Hz. Distinct seismic phases, such as P, PP, §, S§, etc., are seldom
present. Instead, the first arrival is immediately followed by a very complex P wave coda.
and the S arrival consists of a sudden increase in amplitude followed by slowly decaying S
wave coda. Seismograms from the high-Q regions of north-eastern United States are
particularly complicated in this respect, presumably because intrinsic attenuation losses are
small and the seismic energy may interact with scatterers in the crust and lithosphere.

We present an evaluation of two properties of the seismograms, polarization and
spatial coherence, which measure different aspects of the complexity of the seismograms
and the underlying scattering process. These measurements are made with two quasi-linear
and narrow aperture arrays with very small interstation spacings - from 7 to 734 m. For
comparision, one wavelength of a compressional waves in a medium with a nominal 6.0
km/s velocity 1s 1200 m at 5 Hz and 120 m at 50 Hz. Our aim is to use these
measurements to make inferences about the nature of the heterogeneities that produce the
complicated coda. Of particular interest are 1) whether fine-scale horizontal stratification
such as that proposed by Sereno and Orcutt [1987] to explain oceanic Py coda can satisfy
coda properties observed for continental paths or whether laterally varying media are
required; 2) whether the distortion of the wavefield indicates weak or strong scattering,
and; 3) the spatial distribution of scatterers if they exist.

Site and Instrument Characteristics

The seismograms were recorded by two linear arrays:

1) The ECO array, a six-clement linear seismic array operated in State University of
New York at Syracuse's Huntington Forest Ecological Center, Newcomb, NY. This is an
area of Proterozoic metamorphic bedrock (mostly gneiss and marble)in the south-central
Adirondack uplift, covered in places by a thin (0-5 m) layer of glacial till. The array was
aligned east-west in a grassy meadow near the south-west corner of Rich Lake, with all
sensors cemented to exposed gneiss outcrops. The array aperature was 75 m, with a
nominal element spacing of 15 m; and

2) The DBM array, a seven element iinear array on the southern flank of Dun
Brook Mountain about 11 km southwest of ECO. This is also an area of till-draped
Proterozoic metamorphic bedrock. The array had a near-logarithmic interstation spacing
from 7 to 354 m giving a total aperture of 734 m, and was oriented northeast-southwest.
The seismometers were cemented to glacially-polished outcrops of basal gneisses showing
little evidence of weathering.

o




Each urray element consists of a three-component Mark Products, Inc. Model 1.22-
D> geophone mounted in a pressure-sealed aluminum case. These geophones are passive
electromagnetic velocity sensors with a natural period of 0.5 5. The velocity response of
each component was determined by a mass-drop test (Figure 1), and is very flat above 3
Hz. Gain level determined from the calibrations have been applied to the seismic
recordings. The output of each array element was independently recorded by a EDA
Associates Model PRS-4 3-channel digital recorder, with each channel sampled at either
100 or 200 samples/s. The data are gain-ranged. with each sample consisting of sign bit,
12 bit mantissa, and 3 bit gain, giving a total dynamic range of 120 dB.

in this paper we concentrate upon four carthquakes (labeled 1 through 4, Figure 2)
recorded by the ECO array that are well distnibuted in epicentral range (5, 40, 140, 170 km,
respectively) and a refraction profile (the New York-New England Experiment, see
Luetgert et al.. 1989) recorded by the DBM array (Figure 3). The EVO events have good
signal to noise ratios in the 3-30 Hz range (Figure 4), so we limit our discussion to that
band. The corresponding band at DBM is from 5-25 Hz.

Polarization

If the earth were vertically stratified, then all energy arriving between the P and S
waves (which we call the 'P wave coda’) would necessarily be polarized in the vertical
plane containing source and receiver. The degree to which the P wave coda is polarized
outside of this plane is a rough measure of the strength of lateral heterogeneities along the
propagation path. We therefore rotated the three-component seismograms into a vertical-
radial-tangential (z, r, t) coordinate system, where the radial direction is the horizontal
direction in this plane and the tangential direction is normal to it. The rotation angle was
alternatively set to that specified by the great circle connecting epicenter and receiver, or by
the angle that minimized the first cycle of the tangential component of the P wave. Both
these methods give rotation angles within 10° of each other.

While the very first arrival was always polarized in the vertical plane, the amplitude
of the P wave coda on the tangential coda always rose to approximately equal the radial
amplitude within 1-10 cycles (0.1-0.5 s, Figures 5, 6). All three components were quite
coherent over the aperture of the array (with coherence distances of about 100 m at 20 Hz,
as we will demonstrate below), indicating that the tangential motion is a property of
relatively large (>10% m3) volumes of rock, and not just an anomaly caused by a
malfunctioning instrument, poor instrument-rock coupling, or outcrop-scale effects.

Frequency-dependent polarization analysis, based on the technique developed by
Park et al. (1987), was applied to both the very onset of the P wave and the P wave coda
(Figure 7) . The polarization angle determined by this method for the P wave onset




generally agrees with the great-circle angle over the 5-30 Hz range to within £15° (Figure
8), with the variation across the array for any one event being smaller, about £7°. There is a
systematic, range dependent azimuth anomaly with a magnitude of about 10 degrees,
perhaps due to the deflection of rays from the great circle by large-scale velocity
heterogeneities in the crust. The polarization of P wave coda is very complicated.
displaying neither linear nor planar polarization. Indeed, we are unable to find a statistical
test that can distinguish ity polarization from that of random time series with similar spectra.
The apparent azimuth and angle of incidence generally vary strongly with frequency, with
excursions in excess of 60° from the expected values being common. Nevertheless, this
pattern of variation of azimuth and angle of incidence with frequency is reasonably coherent
across the entire width of the array (not shown), indicating that it is not primarily an
outcrop-scale effect.

The onset of the P wave coda 1s a superposition of waves scattered by
compressional to compressional. compressional to shear. and shear to compressional
interactions (and possibly multiple scattering;. The shear to compressional interactions
must occur close to the source, because of the slow speed of the shear wave. They arrive
at the recerver along a path similar to the direct P wave and make only a small contribution
to the transverse P wave coda. Similarly, compressional to compressional interactions that
occur far from the recetver also have little transverse motion. Compressional to shear wave
intergctions can have large transverse motion, but the slow speed of the shear wave limits
these to the neighborhood of the receiver. The very rapid increase in the ratio of tangential
to radial P wave coda energy from zero to about unity over a wide frequency bandwidth
(Figures 9, 10) indicates that compressional to compressional and compressional to shear
wave scattering nedr the receiver s of major importance. The ratio near unity may also
indicate that multiple scattering is occuring, since Sato's (1984) models of coda envelopes
in a weakly scattering medium give much smaller ratios.  On the other hand, the clearly
defined S wave arrivals observed in the carthquake seismograms indicate that the
heterogenenty is not so strong that t+.> ditfusive limit of strong scattering has been reached
(as has been explored by Daintv and Toksoz (1975) for lunar seismograms).

Spatial Coherence

The coherence buiween two time series measures the similarity of their shapes in a
grven frequency band, ranging between zero when they are completely dissimilar and one
when they are identical. The coherence between two seismograms six,.t) and s(x-.1)

recorded at positions x; and x, ts typically detined as:




s eDstxo

C(f]Af.AX) =
<s*(x1.0)s(x1,O)><s"(x2.0)s(x2.0)>

. (1

Here s(x;.f) is the Fourier transform of s(x,,t) over frequency, f, <> denotes boxcar
averaging over a frequency interval Af centered on £ * denotes complex conjugation, and
we have assumed that coherence is stationary in that it depends on relative receiver
separation Ax=x,-xX>. As It stands, this definition of coherence is unsuitable for our
analysis, because it does not account for the possibility of diftferent levels of coherence
between different time intervals in the signals (the P and S waves, for example), and does
not account for any moveout between the signals caused by propagation between stations.
We therefore adopt a moving-window coherence in which the two signals are divided into
several smaller sections and corresponding sectinns of the two signals are allowed to be
lagged with respect to each other. The new signal is, S(x;.)=W(1(.AT) s(x;,t), where
Wity AT) 15 a cosine-tapered window function centered on time, ty, and of length, AT and

sampling interval, At. The coherence is then defined as:

max 1<S§*(x1,D)e2mf S (x4, N>I1?

C(f,Af  Ax,tg,ALE) = T . x
<S™(x1,.DS(x1.5)><S"(x2,0)S(x2,)>
Iti/At<e

(2)
The factor of exp(2rift) has the effect of allowing for small time shifts between the two
signals. In this paper, we use Af=5 or 6 Hz, AT=0.5-2.6 s, and €=20. Successive
windows are lagged by AT/2, giving some overlap and effective smoothing of the moving-
window calculation.

The maximization of the coherence with repect to lag causes some upward bias in
the coherence c-iimate, even for completely random, incoherent timesereies. This is
because the process of lagging the signals will tend to allign random similarities that may be
present. We have investaged this effect by Monte-Carlo simulation, and have found that it
changes the coherence by less than 0.1 (Figure 11). In all of our calculations, a coherence
greater than 0.3 is distinguishable from incoherence at the 95% confidence level.

Finally, we can define a mean coherence, C,, of a long scismogram as the expected
value of the coherence of its many windows. In this paper we use the arithmetic mean as a

estimate of the expected value, even though the coherence estimates do not have a gaussian




distribution (being constrained to he between zero and unity). This appreximation causes
some bias in the estimate. However, Monte Carlo experiments (Figure 12) using the
window lengths and other parameters from our analyses indicate that the bias for our
particular estimates are small, less than 0.05 coherence units. Cy, is coinputed for the first
15 s after the P arrival, averaged over epicentral ranges less than 250 km (see Figure 3).

The moving-window coherence for the entire DBM NYNEX record section is
shown in Figure 13. Note that the cohererce does not vary much with range (the decrease
in coherence with time in the S-wave coda is due to the decrease in the signal to noise ratio)
and that the wavefield is more coherent at small inter-station offsets than at large ones. The
coherence of the vertical, radial, and transverse components of the data can be summarized
as follows:

1. The coherence of the P wave onset is usually higher than the rest of the
seismogram on both vertical and radial components, by about 10-20% (Figure 14).

2. The coherence of the S wave and its coda is broadly similar to the coherence of
the P wave coda (Figures 15 and 17).

3. The coherence of P wave coda is greatest on the vertical component, which
tends to be 5-10% more coherent than the radial and transverse components. The
coherence of the radial and transverse components are not significantly different (Figure
16).

4. Coherence is independent of epicentral range and azimuth relative to the axis of
the array (at least for ranges between 5 and 200 km, Figure 15 and 17), but decreases
strongly with both frequency. f. and station separation, Ax (Figure 18). The mean
coherence at an array can he fic between 5 and 25 Hz by the empirical function, C,, =
exp{—cfAx}, where c=0.41 km~1 Hz"! for the ECO array (Figure 18), and where ¢ = 0.67
km~THz=1 for the DBM array. We do not claim that the true coherence is necessarily an
exponential, just that this formula satisfactorially describes the observed pattern of variation
(which, afier all, has considerable scatter). Since the compressional velocity in bedrock
= exp(—k Ax/A ).

where lpis the wavelength of the compressional wave and k is in the range 2-3. The

bencath the array is about S kny/s, we can also write this formula as C,,,
coherence length is on the order of one third to one half a waveiengih.
The high coherence of the P wave onset can be understood from the fact that this
energy arrives first and cannot have been incoherently scattered by heterogeneities in the
carth. The similar pattern of coherence of the three components of P and S coda waves is a
strong argument for the importance of multiple scattering. Sufficient number of scattering
interactions must have taken place so that the energy is equally distributed between all

possible modes of propagation, regardless of its origin,  The ratio of compressional to

6




shear wave energy in the P wave coda must be very similar to that in the S wave coda,
because the coherence decreases with inter-station offset at the same rate in both cases,
even though the wavelength of compressional waves is about V3 larger than the wavelength
of shear waves. The characteristic offset, (Ax), in which the coherence decays to i/e is
quite small, about one-third to one-half wavelength.

The dependence of mean cohcrence on the combination fAx (or Ax/lp) and its
independence of source-receiver range implies that the only important length scale
governing the scattering is the wavelength of the seismic energy (and not the source-
receiver distance). One model that fits the data places the scatterers that control the
coherence in a layer of thickness, L, near the carth's surface (and the array). No
conclusion can be reached about the scatterers elsewhere along the propagation path. The
near-receiver scattering is presumed to be sufficiently strong that it ‘'masks out' scattering
from greatei distances.

We have performed a simple calculation to crudely model this situation. We
assume that the scattering is due to N discrete point sources in a volume, V, beneath the
array. all radiating with a white spectrum and randomly chosen phase, ¢. The point
sources mode! the waves scattered from the heterogencities in the earth when they are
illuminated by some incident wave. The initial phase is chosen randomly, since it will
depend upon the strength of the random heterogeneity. The signals observed at two

stations, one located at x, and the other at x,=x,;+Ax, are then:

sl<0=zj=1N Ix, O exp{2infc-InOex,0) + i)
(3)

and
sz(f):ijlN x,Mi-lexp { 2infenGex, + id)

“4)

where nQ) is a unit vector from the j-th scatterer to the receiver. The ensemble-averaged
mean coherence of these two signals (which we compute numerically) roughly matches the
observed coherence when V=1250 km3, N is in the range 100-1000, and where the volume
extends to the earth’s surface. When the scattering volume is moved to a depth of 5 km,
the coherence decays with offset too slowly to fit the data (Figure 19). However, the shape




of the model coherence curves differ significantly from the data, being inodeled better by
C=exp(—k(fAx)¢} than by exp{—cfAx}. The coefficient, k, of the model is also 40%
smaller than that of the data. We attribute these effects to the simplicity of the model,
which ignores many effects, including the vasiation of the initial phase with frequency.




Summary

Although the compressional wave coda has a very complex polarization, the three
components of motion have a very high coherence between neighboring stations in both the
ECO and DBM arrays. The complex polarization is a robust property of the wavefield, and

not merely an outcrop-scale effect.

The major characteristics of the polarization are 1) The onset of P is polarized in the
manner expected from the source-receiver orientation; 2) The polarization P and S coda
are similar to those of random time series; and 3) The ratio of energy on the transverse
component to radial component rapidly rises from zero at the onset of P to about unity in |-
10 cycles, over the 5-30 Hz band.

These results cannot be explained by a vertically stratified model (which has no
transverse compressional motion). Travel time considerations suggest that compressional
to shear wave scattering near the receiver is occurring. The presence of complex
polarization poses problems for experiments designed to measure shear wave splitting due
to anisotropy, since the transidon from a first-arriving shear wave (where the polarization is
linear) to the second-arriving shear wave (where the polarization becomes complex) may be
masked by scattering. Measurements of the splitting time may be minimum estimates, with
corresponding minimum estimates of the amount of anisotropy. We suggest that the
disturbing effect of scattering be tested for by examining the polarization of the
compressional wave. Any apparent 'splitting’ of the compressional wave implies strong
scattering, and makes measurements of shear wave splitting suspect. On the other hand, a
linear increase in the splitting times with source-receiver range supports the conclusion that
the splitting is indeed due to anisotropy.

The coherence in the 5-30 Hz band decreases smoothly with receiver separation.
No instances of sharp drops between stations were observed, as might be caused, say, by
the acoustic isolation of parts of the array by joints or faults between the receivers. Of
course, the receiver sites in both arrays were carefully chosen to be on what looked like
firm bedrock, so the experimental design discriminated against such effects,

The coherence results are: 1) The spatial coherence of the seismograms is
approximately exp{-cfAx}, where ¢=0.4 10 0.7 km 'Hz ! £ s frequency and Ax s

station offset, at least for the distance range 5-238 km; and 2) The spatial coherence is




approximately independent of component, epicentral azimuth and range, and whether P or
S wave coda is being considered.

These results imply that the heterogeneities are three-dimensional and that scattering
from near-receiver heterogeneities controls the coherence properties of the seismograms.
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Figure Captions

Fig. 1. Velocity response for the vertical channel of one of the geophones used in the
study. The response of the other elements and channels is similar. Note that the response
is very flat between 3 and 30 Hz.

Fig. 2. Vertical-component seismograms for one of the stations of the ECO array for 4
events (labeled 1-4) used in the study. Source-receiver distance are 5 ,40, 140 and 172
km.

Fig 3. Record section of the vertical component of one of the elements of DMB array. The
shots, part of the New York - New England seismic experiment (NYNEX) organized by
the U.S. Geological Survey and Air Force Geophysical Laboratory, were along a roughly
east-west line and consisted of about 1000 kg of ANFO explosive in a 30-50 m deep
borehole. The shaded part of the seismograms were used in the calculation of toherence,
described later in the paper.

Fig. 4. Amplitude spectrum of velocity seismogram of signal (bold) and noise (solid) for a
typical event recorded by the ECO array. Note that the signal to noise ratio is high (greater
than 10) for the frequency band 3-30 Hz.

Fig. 5. First arrival (marked P) and onset of P coda for four events recorded by the ECO
array. Two components. radial (R) and transverse (T) are shown. Note that amplitude of
the tangential component is small during the onset, but rapidly rises to roughly equal the
amplitude of the radial component.

Fig. 6. The radial (left column) and transverse (right column) components of the P wave
coda of event 1 for various choices of the rotation azimuth (measured relative to the great-
circle azimuth, so that the lowest traces, labeled zero, are the ones used in the study. Note
that the transverse component of the onset of P is smallest only for rotation andgles near
zero. The rest of the P wave coda cannot be rotated into an optimal radial direction for any

choice of angle.

Fig. 7. Frequency-dependent polarization for four time windows in the P wave coda of

Event ECO 4. Windows are delimited by vertical bars, with first window shaded.

12




Azimuth 1s measured counter-clockwise from geometical azimwuth, angle of incidence from
vertical. Note that the azimith of the first window, which includes the first arriving waves,
is within £5° of zero (the geometrical azimuth) for the frequency band 2-20 Hz. The
azimuth of subsequent windows is typically 30-40° from the geometrical azimuth and varies
strongly with frequency. Six tapers are used in the frequency-dependent polarization
analysis.

Figure 8. Polarization anomalies for the onset of P (0.64 s windows) in the New York -
Nex England refraction experiment as observed at the DBM array. Data are arranged by
increasing station-event range, with the western ranges plotted as negative and the eastern
as positive. Data are shown for two frequencies bands: 5-10 Hz (circles) and 10-20 Hz
(crosses). Six tapers are used in the frequency-dependent polarization analysis. Note that
the polarization anomalies are about +15° and that the spread for any given range (which
corresponds to a single shot observed by the elements of the array) is smaller, about +7°,

Fig. 9. Ratio of tranverse to radial component of event 1 for 5 Hz (top graph) and 30 Hz
(second graph). The ratio rapidly grows to about unity. These ratios were computed by
taking the ratio of the envelopes of the transverse and radial seismograms, where the
envelope is the time-averaged sum of the squared signal and the square of its Hilbert
transform. The radial (third graph) and tangential (bottom graph) seismograms are shown

for reference.

Fig. 10. Ratio of tranverse to radial component of event 4 for 5 Hz (top graph) and 30
(second granh) Hz. See caption of Figure 8 for details.

Fig. 11. 95% confidence limits for the null hypothesis that two lime series have non-zero
coherence, as a function of frequency. The different curves correspond to different time
windows (€At in equation 2) over which the coherence is maximized. Increasing the time
window increases the 95% confidence limit slightly. For the cases described in this paper,
cohrences greater than ().3 are statistically significant.

Fig. 12. Mean coherence of a pair of 320 s long time series (not shown), determined by
computing the coherence of several windowed portions of the time series and then taking
the arithmetic mean »f the results. The time series are broad band, random time series with
an actual coherence of 0.9. The estimated mean coherences are generally biased to values
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lower tahn 0.9, and vary slightly with the window length. However, the bias is small (less

than (1.05), and deemed by us to be acceptable.

Fig. 13. Coherence (1.0-0.8 shaded black, 0.8-0.3 gray, 0.3-0.0 white) as a function of
frequency (horizontal axis, from 0 to 50 Hz) and time in the seismogram (vertical axis,
from 0-30 s) for the NYNEX refraction shots observed at the DBM array. Source-receiver
distance increase from panel to panel horizontally, and inter-receiver offset increase
vertically. Note the smaller offsets are the most coherent. Coherences greater than 0.3 are

statistically significant.

Fig. 14. Moving-window coherence of radial component of P wave coda of ECO Event 4.
Four frequencies are shown: 5 Hz (bold), 10 Hz (solid). 20 Hz (dotted)., 30 Hz (dashed).
The station offset is 75 m. Note that the coherence of the very onset of P (at about 5s) is
higher than the later coda. The overall level of the coherence declines with frequency.

Coherences greater than ().3 are statistically significant.

Fig. 15. Mean coherence (dots) and error bars as a function of frequency for the first 30
seconds tollowing the P wave for the vertical component of the DBM NYNEX dataset.
The four curves are for the four receiver offsets, 7, 19, 29, 50 m, with the smaller offsets
having the higher coherences. Note that error bars are small, especially in the 5-30 Hz
band where the signal to noise ratio is the best, even though the moving-window
coherences that are stacked to compute mean coherence are for different ranges (in the
interval 10-200 km) and ditfe.ent parts of the seismogram (15 different 2 second windows

tollowing the P wave). Coherences greater than (0.3 are statistically significant.

Fig. 16. Moving-window coherence of vertical, radial, and transverse components of P
wave coda of ECO Event . Four frequencies are shown: 5 Hz (bold), 10 Hz (solid), 20
Hz (dotted), 30 Hz (dashed). The station offset is 75 m. Note that the coherence of the
very onset of P (at about Ss) i< higher than the later coda. The overall level of the

coherence dectines with frequency. Coberences greater than 0.3 are stausticadly significant

ot the P wave coda (solid) and S wave coda (bold) of ECO

events 1, 203 and 4 as a function of oftset, Ax. Event | has a range of 5 km and Event 4

Fig. 17. Mean coherence, ¢

me

has a range of 172 km  Fonr frequency bands are shown, S Hz, 10 Hz, 20 11z, 30 Hz.

Note that the decay rate of the coherence with offset is insensitive to source range and




ﬂ

whether P or S coda is being considered. Coherences greater than 0.3 are statistically

significant.

Fig. 18. (Top) Mean coherence of all data as a function of receiver offset, and exponential
fits. Same symbols as Figure 10. (Bottom) Decay rates as determined by exponential fits
as a function of frequency (solid), and linear fit (bold). Coherences greater than 0.3 are

statistically significant.

Fig. 19. Ensemble-averaged mean coherence (crosses) for the simple scattering model
described in the text, and Gaussian fits (solid), for two choices of the depth to the top of
the scatterer volume, 100 m (top) and 5 km (bottom). Shallow scatterers fit the observed

coherences (Figure 11) better than deep ones.
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